SysTemp
Brochure Close Control
Systemair Your reliable partner in data centre cooling
Since then the product portfolio has grown considerably and today comprises of a wide range of energy efficient fans, air handling units, air distribution products, chillers, air curtains and heating products. Our business idea is that with simplicity and reliability as core values, develop, manufacture and market ventilation products of high quality.

With the business idea as a base and our customers in focus, we will be perceived as a company to trust with a focus on delivery security, availability and quality. Our focus is to develop innovative and energy efficient products - that are easy to select, install and maintain. With over 4000 employees in 45 countries, we are always close to our customers.
Systemair worldwide

Skinnskatteberg, Sweden
The Group headquarters, distribution center and largest production site. Production of compact air handling units, a wide range of fans and accessories, air curtains and fan heaters.

Hässleholm, Sweden
Production of heating products for air handling units, fan heaters and dehumidifiers.

Windischbuch, Germany
Production facility and distribution center, specializing in engineered products.

Langenfeld, Germany
Production of air curtains.

Mühlheim an der Ruhr, Germany
Production of air handling units for swimming pool halls and comfort ventilation.

Ukmergė, Lithuania
Production of residential units and large air handling units.

Maribor, Slovenia
Production of high-temperature fans for smoke extract ventilation.

Aarhus, Denmark
Production of large air handling units.

Bratislava, Slovakia
Production of air distribution products and fire dampers.

Hyderabad, India
Production of air distribution products.

Greater Noida, New Delhi, India
Production of duct, axial and box fans, air handling units and air distribution products.

Kuala Lumpur, Malaysia
Production of duct and axial fans.

Johannesburg, South Africa
Production of axial fans.

Lenexa, USA
Manufacturing and distribution center of ventilation products.
Quality:
Systemair is certified in accordance with ISO 9001, ISO 14001 and ATEX. Our research and development laboratories are one of the most modern in Europe, measurements are made in accordance with international standards like AMCA and ISO.

Save energy, lower running cost!
Our label “Green Ventilation” features products with a high energy saving potential. All products labelled with “Green Ventilation” combine energy economy with energy efficiency.

Barlassina, Italy
Production of liquid and air-cooled chillers and heat pumps for comfort cooling.

Tillières, France
Production of air conditioning products for the commercial market.

Madrid, Spain
Production of large air handling units and box fans.

Bouctouche, Canada
Production of air handling units.

Tillsonburg, Canada
Production of air handling units.

Eidsvoll, Norway
Production of air handling units.

Istanbul, Turkey
Production of air handling units and fan coils.

Waalwijk, The Netherlands
Production of air handling units.

Pardubice, Czech Rep.
Development and manufacturing of air handling units and air curtains.

Winterbach, Germany
Development and production of high end air curtains.

Helmstadt, Germany
Manufacturing of rotary heat exchangers.

Sao Paolo, Brasil
Manufacturing of air handling units and accessories.

Wujiang, China
Production of air handling units.

Always close to you!
3 Distribution Centers
27 Production Facilities
50 Countries with Sales Subsidiaries
Product range

Systemair has an extensive range of ventilation products, the majority of which are fans and air handling units. Other products include a wide range of air terminal devices for various applications. These products are installed in a variety of locations, including homes, offices, healthcare premises, shops, industrial buildings, tunnels, parking garages, training facilities, sports centres. The most common usage is comfort ventilation, but safety ventilation in various forms is also an important market. Smoke gas ventilation and tunnel ventilation are two examples.

Fans
Systemair is one of the world’s largest suppliers of fans for use in various types of property. Our range includes everything from duct fans with a round connection – the company’s original product – to rectangular duct fans, roof fans, axial fans, explosion-proof fans, and smoke gas fans. These fans can be supplied in sizes suitable for everything from ducts with a diameter of just 100 mm to large road tunnel fans. All our fans have been developed to comply with stringent requirements and are characterised by user-friendliness, a high level of quality and a long service life.

Duct fans
Duct fans for circular duct installation.

Rectangular duct fans
Duct fans with a rectangular connection.

Axial fans
Axial fans for duct connection or wall mounting.

Roof fans
Roof fans with a circular or square connection.

Air handling units
Systemair produces a wide range of air handling units.

Horizontal units
A broad range of horizontal air handling units with or without heat recovery. Useable everywhere from smaller premises to schools, stores and larger offices.
Air flow: 20–1500 l/s

Vertical units
A broad range of vertical air handling units with or without heat recovery. Useable everywhere from smaller premises to schools, stores and larger offices.
Air flow: 20–1500 l/s
Fire safety ventilation
Systemair produces fans, dampers and control equipment for protection against smoke and fire certified for use during normal operation and in the event of a fire. The axial fans are certified for installation inside or outside fire risk areas.

Chillers & Heat pumps
Our wide range of Chillers and Heat Pumps cover a huge variety of applications. Our production is equipped with high-tech machinery and has one of the most modern research centers in Europe.

Air terminal devices
Systemair’s range also includes a wide selection of air terminal devices for all possible environments and positions. Development and manufacture take place at a modern factory in Slovakia.

Smoke gas fans
High-capacity fans for evacuation of smoke gases.

Fire dampers
Dampers that reduce the spread of smoke and fire.

Air cooled and water cooled chillers
Scroll compressor with or without heat recovery

Water terminals and close control
Fan coils, casettes and chilled beams

Supply, extract & transfer air terminal devices
For mounting in ceilings or walls.

Nozzle air devices
Optimum air distribution for rooms.

Supply & extract air ventilators
For mounting in ceilings and walls.

Duct products
Dampers, plenum boxes, and duct accessories.
Efficiency and energy saving

Green building engineering
Systemair aims to offer a comprehensive range of close control air conditioning units, designed to meet the requirements of environmentally sustainable development:
- Technical innovation
- Ease of use
- Flexibility of use
- Energy efficiency
- Service reliability

Improving energy efficiency and sustainability
SysTemp designed as a highly efficient and sustainable equipment and has the following features:
- SySmart advanced microprocessor control system, characterized by features that optimize unit control and system energy saving.
- The latest generation of EC fans, entirely controlled via Modbus® protocol, on the full range of close control air conditioners.
- Electronic expansion valves on the entire range of direct expansion close control air conditioners.
- Brushless DC compressors (accessory) with inverter control over the entire range of direct expansion close control air conditioners.

Optimising infrastructure
The wide range of models and accessories enables optimal configuration of the air conditioning system. The minimum plan dimensions and the possibility of modulating operation for all components allow development of solutions tailored to the actual needs of the infrastructure, as well as ensuring future expansion without high additional costs. The SysDrive system helps to simplify checks and maintenance operations on direct expansion circuits, by keeping the pressure, temperature and working conditions of the whole cooling cycle under control. Finally, through the Smart Net system, the local network concept is revolutionized, increasing energy savings and safety compared to older systems.

Reducing operating costs
Through the use of high quality components, SysTemp range guarantee high reliability.
Managing and servicing SysTemp range has never been easier:
- Easy and intuitive use of the units via a large Full Graphic LCD display.
- Advanced supervision of the direct expansion cooling cycle, with more than 10 different active safety checks to ensure optimal performance, thanks to the SysDrive system.
- Advanced supervision of the water circuit, thanks to the use of the Energy Valve system.
- Easy maintenance, with all the operation values of fans, cooling circuit, inverter compressors and chilled water circuits being available on your display.

Ensuring certified quality
To be sure that the equipment used in your own infrastructure complies with the design and applicable regulations, you need a guarantee of the quality of the product and all its construction stages.
SysSmart Control
New generation electronic control system

SysTemp close control air conditioning range features an advanced electronic control system called SySmart, conceived and designed to deliver optimum performance and easier access to information.

Innovative
Thanks to the control via Modbus® Master protocol, all key components of the unit are continuously supervised, with over 50 different variables that ensure the real-time monitoring of all operating cycles.

Simple
Thanks to the wide Full Graphic LCD display, access to all operating parameters is guaranteed in a simple and intuitive way, in addition to icons, progress bars, as well as daily and weekly temperature and humidity charts.

Flexible
With digital inputs and outputs which, depending on the needs of the system, can be configured with specific features designed to simplify the installation and use of the unit.

Efficient
With specific features dedicated to energy savings and the optimized management of all the unit direct expansion and chilled water operating cycles.

Reliable
Thanks to predictive safety systems designed to prevent unwanted shut-down failures, and to an advanced system for recording alarms and hours of operation.

High connectivity
Thanks to the integrated RS485 Modbus® card and BACnet® and SNMP gateway interfaces, easily and quickly interfacing with supervision systems and building management systems (BMS) is possible.
EC Fans
High performance, low power consumption electronic fans

Innovative
Thanks to the control exerted via the Modbus® Master protocol, it is possible to check all the fan operating values, ensuring the maintenance of the required working point via real-time feedback.

Simple
Thanks to the control via the Modbus® Master protocol, checking the fans is simple and intuitive. The fan self-routing system facilitates maintenance procedures.

Flexible
By modulating the fan speed, units can be adapted to the actual system needs. Pressure or constant air flow management allows the supply of the effective quantity of air necessary to the system.

Efficient
Thanks to the innovative design of the composite material blade, a 25% energy saving and a 4-5 dB(A) noise reduction are possible, compared to the previous generation of fans.

Reliable
Thanks to high reliability components and the independent management of each fan, a high level of system reliability can be ensured.

SysTemp close control air conditioning range are equipped with state-of-the-art electronic fans which allow very high performance levels to be achieved with minimum energy impact.
Energy Valve
Control valve with flow rate and energy electronic monitoring

The chilled water units of the SysTemp close control air conditioning range can be equipped with electronically controlled valves which allow the regulation and continuous monitoring of the water flow rate, inlet and outlet temperatures, and thus cooling capacity.

Innovative
Thanks to the electronic control of the water flow rate and coil inlet and outlet temperatures, the change on Energy Valve system allows the monitoring of the cooling circuit performance in real time and the automatic balancing of the water circuit without the involvement of external personnel.

Simple
Thanks to the automatic balancing with maximum water flow rate control, designing, installing and commissioning the system is easy and fast regardless of the water circuit pressure.

Flexible
Thanks to the real-time monitoring of the water circuit performance, designing how to arrange loads is easy and fast, even in the event of future enlargements of the system.

Efficient
Thanks to the water circuit automatic balancing, energy waste due to water over-flow can be reduced. Performance monitoring allows environmental loads to be controlled, thereby facilitating the identification of imbalances that can affect energy efficiency.

Reliable
Thanks to the electronic control system, water circuit problems that could affect the system service continuity can be identified in advance, thus facilitating maintenance and repair work planning.
Electronic expansion valve

SysTemp close control air conditioning range are equipped with electronic expansion valves to maximize the performance of direct expansion cooling circuits, especially under partialisation conditions.

Innovative
Thanks to an advanced electronic controller, the entire cooling cycle of a unit can be controlled by constantly monitoring the operation conditions of all its components.

Simple
Thanks to an advanced system of adaptive adjustment, difficult circuit calibrations are not necessary. The entire cooling cycle control allows the operation to be monitored without the need to use pressure gauges, probes, etc.

Flexible
Thanks to the valves wide adjustment range, it is possible to ensure the best cooling circuit operation even in the presence of varying thermal loads and under partialisation conditions of the cooling capacity delivered by the circuit.

Efficient
By optimizing working conditions, it is possible to increase the cooling circuit energy efficiency by more than 40% compared to a system provided with a mechanical thermostatic expansion valve (TEV).

Reliable
Thanks to 10 different active safety systems, the cooling circuit locking risk can be reduced by identifying and solving abnormal working conditions in advance.
DC Compressors
DC Compressor with inverter regulation

Innovative
Thanks to the brushless DC synchronous motor, a wide modulation between 20% and 100% of the delivered cooling capacity is possible. The "High Pressure Shell" (HPS) system allows optimum lubrication of the compressor even at the lowest speed, separating the oil from the refrigerant directly inside the compressor.

Simple
Thanks to the direct control via the Modbus® Master protocol a continuous monitoring of the compressor operating conditions is possible with direct access from the terminal unit, or remotely via connection to supervision systems and building management systems (BMS).

Flexible
Thanks to the wide adjustment range, the compressors will automatically adapt to the actual cooling demand, guaranteeing the optimal supply of cooling capacity even in the presence of varying thermal loads.

Efficient
By optimizing the working conditions and efficiency of the brushless DC motor, it is possible to reduce the annual energy consumption by 35% in partial load. It is moreover possible to increase the energy efficiency ratio (EER) by over 25% compared to a system with a fixed speed compressor.

Reliable
Thanks to the inverter control system, the brushless DC motor and the "High Pressure Shell" system, it is possible to ensure the system high functional efficiency, minimizing the need to service the cooling circuit.

The direct expansion units of the SysTemp close control air conditioning range can be equipped with DC compressors with inverter regulation, which allow the delivered cooling capacity to be varied, maximizing the motor performance and reducing energy consumption.
SysDrive

Cooling circuit advanced management system

All direct expansion units are equipped with an innovative control system of the cooling circuit, which allows simplified management, easier maintenance and optimized operational safety.

Active control of operating conditions
The SysDrive system allows the display and monitoring of the operating conditions of the whole cooling cycle, from both the local display and the supervision systems as well as building management systems (BMS). Using suitable probes and pressure transducers helps to detect pressure and temperatures of an evaporator, compressors, a condenser and suction and discharge lines. Thanks to these figures, superheat, de-superheat and subcooling of the refrigerant are calculated. If a DC inverter compressor is installed, actual speed and electrical power consumption will also be monitored.

Operational safety
The SysDrive system actively manages 10 different safety function, designed to provide high operational safety.

- Low evaporation pressure and high condensing pressure of the circuit
- Low operating pressure and high operating pressure of the circuit
- Compressor low compression ratio
- Low and high superheat values
- Low and high de-superheat values
- Refrigerant high discharge temperature

Tool-less simplified maintenance
The SysDrive system makes it possible to significantly simplify all the installation and maintenance procedures of direct expansion units. Using tools to check the conditions of the cooling circuit will be no longer necessary. Technicians will be able to easily access all the operating conditions by simply pressing a button on the display. Thanks to the ability to interface with the major supervision systems and building management systems (BMS), monitoring the entire cycle of a unit will be even easier and quicker.
Smart Net

The intelligent local network

Active distribution of workload
The innovative Smart Net system allows the concept of local network to be revolutionized. Taking advantage of the modulation capabilities of its components, this system makes it possible to actively share the workload among all the units in the local network.

Compared to the latent redundancy Duty / Stand-by (n+1 or n+n) system, where the backup units were stationary waiting for the onset of a problem, the Smart Net system allows the units connected to the network to be kept always active the Smart Net system allows the units to work in unison to monitor thermo-hygrometric conditions and air pressure, ensuring there are no "hot spots" due to inactive units.

Efficiency and energy saving
Thanks to the distribution of workload, system efficiency can be increased by partialising the request to the main components such as fans, compressors, electric batteries and humidifiers.

This partialisation directly translates into an energy saving of up to 60% compared to redundant-type networks (n+1 or n+n). Indeed, instead of having active units working at 100% of their performance while one or several machines are stationary, the Smart Net system allows the entire group of units to operate at 50 or 60% of the their maximum load.

A safe and reliable network
The previous generation of latent redundancy systems gave control to a single unit (Master), while the other units were passive (Slaves). With a view to maximizing the safety of the units operating in the network, the Smart Net system has been developed with a Smart Net management logic. In the Smart Net system, each unit is able to take control of the local network even if communication among units is defective (broken or damaged cable), or in the case of shutdown of one of the units.
Free Cooling

High energy saving air conditioning unit

Systemair innovative Free Cooling systems are able to achieve energy savings of over 50% compared to a conventional air conditioner and reduces the environmental impact.

Free cooling from renewable sources
Thanks to technology of using an outside air for cooling, Systemair offers Free Cooling close control air conditioning units, able to ensure high energy savings combined with the efficiency and reliability that distinguish this type of product.

Intelligent energy saving
The high number of hours per year in which Free Cooling systems can be used ensures that the air conditioning system energy consumption can be reduced by over 50%. This is reflected in an immediate environmental sustainability increase, thanks to a significant reduction in CO₂ emissions, and the system operating costs.

Free Cooling operating hours per year

<table>
<thead>
<tr>
<th>City</th>
<th>Amsterdam</th>
<th>Athens</th>
<th>Belgrade</th>
<th>Berlin</th>
<th>Brussels</th>
<th>Bucharest</th>
<th>Budapest</th>
<th>Copenhagen</th>
<th>Dublin</th>
<th>Helsinki</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of hours (1)</td>
<td>5,641</td>
<td>4,491</td>
<td>5,105</td>
<td>5,583</td>
<td>5,545</td>
<td>5,503</td>
<td>5,279</td>
<td>5,861</td>
<td>7,161</td>
<td>5,796</td>
</tr>
<tr>
<td>Percentage (2)</td>
<td>64%</td>
<td>51%</td>
<td>58%</td>
<td>64%</td>
<td>63%</td>
<td>63%</td>
<td>60%</td>
<td>67%</td>
<td>82%</td>
<td>71%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>City</th>
<th>Istanbul</th>
<th>London</th>
<th>Madrid</th>
<th>Milan</th>
<th>Moscow</th>
<th>Oslo</th>
<th>Paris</th>
<th>Prague</th>
<th>Reykjavik</th>
<th>Vienna</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of hours (1)</td>
<td>4,779</td>
<td>5,575</td>
<td>4,643</td>
<td>5,281</td>
<td>6,046</td>
<td>6,202</td>
<td>5,187</td>
<td>5,619</td>
<td>7,743</td>
<td>5,651</td>
</tr>
<tr>
<td>Percentage (2)</td>
<td>55%</td>
<td>64%</td>
<td>53%</td>
<td>60%</td>
<td>71%</td>
<td>73%</td>
<td>59%</td>
<td>64%</td>
<td>88%</td>
<td>65%</td>
</tr>
</tbody>
</table>
Indirect free cooling
The indirect Free Cooling system is characterised by a hybrid unit, consisting of a primary water circuit and a secondary direct expansion or chilled water circuit. The primary water circuit is connected to a dry cooler that uses outside air - a source of renewable energy - to cool water. The secondary circuit on the other hand exploits the mechanical cooling.

Optimized operating procedures
Depending on the outside air temperatures, three possible operating procedures are possible.

Total free cooling
The unit completely operates in Free Cooling without triggering mechanical cooling (1).

Partial free cooling
In addition to operating the Free Cooling circuit, mechanical cooling can be triggered for the time strictly necessary to meet the demand for cooling (2).

No free cooling
Regulation is completely entrusted to mechanical cooling, excluding the Free Cooling circuit.

Self-adaptive set-point of the dry cooler
In order to maximise the efficiency of the Free Cooling system, the unit can handle the regulation of the dry cooler coupled to it directly. Thanks to the self-adaptive set-point function, the fan speed can be regulated so that the water always has a temperature consistent with the outside air conditions.

This leads to an increase in the system efficiency, allowing you to maximise the performance of both the Free Cooling circuit and the direct expansion circuit, ensuring low condensing temperatures. In addition, the fans of the dry cooler will partially operate even with high temperatures, thereby increasing the energy savings of the system (3).
DualPower

Dual circuit system

Systemair offers specific units, named DualPower, provided with two independent cooling sources for critical applications where the discontinuity of equipment operation is not acceptable.

High operational safety
Sometime the main cooling source may be insufficient to guarantee suitable environmental conditions. This may be due to an overload of the system, possible seasonal closures or any type of emergency. A reduction in the machine cooling capacity can lead to great instability in the system, even in the presence of redundancy or Smart Net systems.

To avoid these problems, specific DualPower units have been developed providing a second source of cooling, complete with its own control valve and independent from the primary one.

A safe, flexible system
The DualPower system is very flexible and allows three different types of systems.

Chilled water + direct expansion two sources
The chilled water primary source of the unit is connected to a building chiller or to district cooling, whereas the secondary, emergency, and direct expansion one is connected to remote air or in-built water condensers (1).

Direct expansion + chilled water two sources
The direct expansion primary source of the unit is connected to remote air or in-built water condensers, whereas the secondary, emergency, and water one is connected to a dedicated chiller, to a groundwater/aqueduct water distribution network or to district cooling (2).

Chilled water + chilled water two sources
Both sources of the unit are chilled water coils. The primary one is normally connected to a building chiller or to district cooling. The emergency source can be connected to a dedicated chiller or a groundwater/aqueduct water distribution network (3).
Unit identification

ST SysTemp close control range

Air supply type:

O Upflow air supply
U Downflow air
H Horizontal supply

Series name:

P Close Control Air Conditioners: Perimeter installation
G Air Conditioners for large Data Centres: Perimeter Installation
R Air Conditioners for large Data Centres: In Row installation

Cooling type:

A Direct expansion coil
U Chilled water coil

07 Nominal size (nominal cooling capacity in kW)

1 Number of cooling circuits (Only direct expansion units)

a Series modification index

Versions:

TS Two Sources
FC Free Cooling
SysTemp P

The P Series close control air conditioners have constructional and operating characteristics suitable for environments where thermal loads of a sensitive nature prevail.

Although optimised for data centers, the technical characteristics of the P series make these units suitable for various types of special applications, such as metrology laboratories, TV production studios, recording and conservation rooms for musical instruments, museums and archives, control rooms in power stations and railway junctions.

In addition, their application proves ideal for various industrial sectors: optics, electronics, electromedical equipment, production of electrical or electronic equipment, production of musical instruments, etc.

P series air conditioners offer:
- Temperature and humidity close control.
- A high delivered cooling capacity to footprint ratio, which makes it easier to design the environments to be air conditioned.
- Very high values of energy efficiency, which translate into lower CO₂ emissions into the environment, and in particularly low operating costs.
- High flexibility of use, thanks to the wide range of accessories which can be selected.

Technical feature
- Very high EER (Energy Efficiency Ratio)
- Limited footprint
- Dark gray RAL 7024 metal structure
- Panels with thermo-acoustic insulation
- Electrical panel complete with control and safety devices
- SySmart control microprocessor with graphic display
- G4-class efficiency air filters with dirty filter alert
- Return air temperature sensor
- Supply air temperature sensor
- Electronic EC fans
- R410A scroll compressors
- Electronic expansion valves with SysDrive system
- Three-way control valves
- Unit shutdown system for the presence of fire
- RS485 Modbus® RTU slave card
Air Conditioners with downflow air supply

ST UPA: Direct expansion air conditioners with downflow air supply and aircooled or watercooled condensers

<table>
<thead>
<tr>
<th>ST UPA</th>
<th>71</th>
<th>141</th>
<th>211</th>
<th>251</th>
<th>301</th>
<th>302</th>
<th>361</th>
<th>422</th>
<th>461</th>
<th>512</th>
<th>662</th>
<th>852</th>
<th>932</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance</td>
<td></td>
</tr>
<tr>
<td>Total cooling capacity (1) kW</td>
<td>7,8</td>
<td>14,8</td>
<td>21,4</td>
<td>26,4</td>
<td>33,2</td>
<td>31,1</td>
<td>37,9</td>
<td>43,7</td>
<td>47,9</td>
<td>54,7</td>
<td>68,2</td>
<td>85,9</td>
<td>94,2</td>
</tr>
<tr>
<td>Sensible cooling capacity kW</td>
<td>7,5</td>
<td>13,6</td>
<td>21,4</td>
<td>25,7</td>
<td>32,0</td>
<td>31,1</td>
<td>37,9</td>
<td>43,7</td>
<td>47,4</td>
<td>53,0</td>
<td>65,2</td>
<td>73,0</td>
<td>85,4</td>
</tr>
<tr>
<td>Air flow rate m³/h</td>
<td>2,200</td>
<td>3,200</td>
<td>7,000</td>
<td>7,000</td>
<td>8,700</td>
<td>8,700</td>
<td>14,500</td>
<td>14,500</td>
<td>14,500</td>
<td>14,500</td>
<td>17,900</td>
<td>17,900</td>
<td>20,700</td>
</tr>
<tr>
<td>Noise level (3) dB(A)</td>
<td>51</td>
<td>57</td>
<td>57</td>
<td>58</td>
<td>62</td>
<td>61</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>63</td>
<td>64</td>
<td>62</td>
</tr>
<tr>
<td>Dimensions and weights</td>
<td></td>
</tr>
<tr>
<td>Width mm</td>
<td>750</td>
<td>750</td>
<td>860</td>
<td>860</td>
<td>1,410</td>
<td>1,410</td>
<td>1,750</td>
<td>1,750</td>
<td>1,750</td>
<td>2,300</td>
<td>2,300</td>
<td>2,640</td>
<td></td>
</tr>
<tr>
<td>Depth mm</td>
<td>601</td>
<td>601</td>
<td>880</td>
<td></td>
</tr>
<tr>
<td>Height mm</td>
<td>1,990</td>
<td></td>
</tr>
<tr>
<td>Net weight kg</td>
<td>150</td>
<td>205</td>
<td>260</td>
<td>285</td>
<td>360</td>
<td>385</td>
<td>440</td>
<td>485</td>
<td>450</td>
<td>500</td>
<td>640</td>
<td>660</td>
<td>860</td>
</tr>
<tr>
<td>Free Cooling</td>
<td></td>
</tr>
<tr>
<td>Two Sources</td>
<td></td>
</tr>
</tbody>
</table>

ST UPU: Chilled water air conditioners with downflow air supply

<table>
<thead>
<tr>
<th>ST UPU</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>50</th>
<th>80</th>
<th>110</th>
<th>160</th>
<th>220</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total cooling capacity (1) kW</td>
<td>10,1</td>
<td>18,2</td>
<td>32,4</td>
<td>43,6</td>
<td>66,8</td>
<td>80,2</td>
<td>121,9</td>
<td>160,3</td>
</tr>
<tr>
<td>Sensible cooling capacity kW</td>
<td>9,4</td>
<td>15,7</td>
<td>29,8</td>
<td>38,1</td>
<td>62,1</td>
<td>72,0</td>
<td>109,7</td>
<td>144,0</td>
</tr>
<tr>
<td>EER (2)</td>
<td>30,6</td>
<td>26,0</td>
<td>25,1</td>
<td>20,8</td>
<td>25,0</td>
<td>23,1</td>
<td>22,2</td>
<td>23,1</td>
</tr>
<tr>
<td>Air flow rate m³/h</td>
<td>2,200</td>
<td>3,200</td>
<td>4,400</td>
<td>8,200</td>
<td>15,400</td>
<td>17,000</td>
<td>26,000</td>
<td>34,000</td>
</tr>
<tr>
<td>Noise level (3) dB(A)</td>
<td>51</td>
<td>57</td>
<td>59</td>
<td>61</td>
<td>62</td>
<td>65</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>Dimensions and weights</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Width mm</td>
<td>750</td>
<td>750</td>
<td>860</td>
<td>860</td>
<td>1,750</td>
<td>1,750</td>
<td>2,640</td>
<td>3,495</td>
</tr>
<tr>
<td>Depth mm</td>
<td>601</td>
<td>601</td>
<td>880</td>
<td>880</td>
<td>880</td>
<td>880</td>
<td>880</td>
<td>880</td>
</tr>
<tr>
<td>Height mm</td>
<td>1,990</td>
<td>1,990</td>
<td>1,990</td>
<td>1,990</td>
<td>1,990</td>
<td>1,990</td>
<td>1,990</td>
<td>1,990</td>
</tr>
<tr>
<td>Net weight kg</td>
<td>115</td>
<td>160</td>
<td>225</td>
<td>240</td>
<td>340</td>
<td>360</td>
<td>540</td>
<td>700</td>
</tr>
<tr>
<td>Two Sources</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Performance refers to: R410A refrigerant; condensing temperature 45°C; incoming air 24°C-55% Rh; water 7/12°C; external static pressure 30 Pa. The declared performance does not take into account the heat generated by fans, which must be added to the system thermal load.
2. EER (Energy Efficiency Ratio) = total cooling capacity / compressors power consumption + fans power consumption (air cooled condensers excluded).
3. Sound levels at a 2 m distance, in a free field, as per UNI EN ISO 3744:2010.
Air Conditioners with upflow air supply

ST OPA: Direct expansion air conditioners with upflow air supply and aircooled or watercooled condensers

<table>
<thead>
<tr>
<th>ST OPA</th>
<th>71</th>
<th>141</th>
<th>211</th>
<th>251</th>
<th>301</th>
<th>302</th>
<th>361</th>
<th>422</th>
<th>461</th>
<th>512</th>
<th>662</th>
<th>852</th>
<th>932</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance</td>
<td></td>
</tr>
<tr>
<td>Total cooling capacity (1) kW</td>
<td>7,8</td>
<td>14,8</td>
<td>21,4</td>
<td>26,4</td>
<td>33,2</td>
<td>31,1</td>
<td>37,9</td>
<td>43,7</td>
<td>47,9</td>
<td>54,7</td>
<td>68,2</td>
<td>85,9</td>
<td>94,2</td>
</tr>
<tr>
<td>Sensible cooling capacity kW</td>
<td>7,5</td>
<td>13,6</td>
<td>21,4</td>
<td>25,7</td>
<td>32,0</td>
<td>31,1</td>
<td>37,9</td>
<td>43,7</td>
<td>47,4</td>
<td>53,0</td>
<td>65,2</td>
<td>73,0</td>
<td>85,4</td>
</tr>
<tr>
<td>EER (2)</td>
<td>3,77</td>
<td>3,46</td>
<td>3,37</td>
<td>3,29</td>
<td>3,18</td>
<td>3,35</td>
<td>3,50</td>
<td>3,42</td>
<td>3,37</td>
<td>3,40</td>
<td>3,26</td>
<td>3,29</td>
<td>3,63</td>
</tr>
<tr>
<td>Noise level (3) dB(A)</td>
<td>51</td>
<td>57</td>
<td>56</td>
<td>57</td>
<td>60</td>
<td>59</td>
<td>59</td>
<td>59</td>
<td>59</td>
<td>62</td>
<td>62</td>
<td>61</td>
<td></td>
</tr>
</tbody>
</table>

Dimensions and weights

Width mm	750	750	860	860	1.410	1.410	1.750	1.750	1.750	1.750	2.300	2.300	2.640
Depth mm	601	601	880	880	880	880	880	880	880	880	880	880	880
Height mm	1.990	1.990	1.990	1.990	1.990	1.990	1.990	1.990	1.990	1.990	1.990	1.990	1.990
Net weight kg	150	205	260	285	360	385	440	485	450	500	640	660	860
Free Cooling													
Two Sources													

ST OPB: Chilled water air conditioners with upflow air supply

<table>
<thead>
<tr>
<th>ST OPU</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>50</th>
<th>80</th>
<th>110</th>
<th>160</th>
<th>220</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total cooling capacity (1) kW</td>
<td>10,1</td>
<td>18,2</td>
<td>32,4</td>
<td>43,6</td>
<td>66,8</td>
<td>80,2</td>
<td>121,9</td>
<td>160,3</td>
</tr>
<tr>
<td>Sensible cooling capacity kW</td>
<td>9,4</td>
<td>15,7</td>
<td>29,8</td>
<td>38,1</td>
<td>62,1</td>
<td>72,0</td>
<td>109,7</td>
<td>144,0</td>
</tr>
<tr>
<td>EER (2)</td>
<td>36,0</td>
<td>33,0</td>
<td>28,0</td>
<td>24,4</td>
<td>27,8</td>
<td>28,0</td>
<td>27,1</td>
<td>28,0</td>
</tr>
<tr>
<td>Air flow rate m³/h</td>
<td>2200</td>
<td>3200</td>
<td>7400</td>
<td>8200</td>
<td>15400</td>
<td>17000</td>
<td>26000</td>
<td>34000</td>
</tr>
<tr>
<td>Noise level (3) dB(A)</td>
<td>51</td>
<td>57</td>
<td>58</td>
<td>61</td>
<td>60</td>
<td>61</td>
<td>63</td>
<td>64</td>
</tr>
</tbody>
</table>

Dimensions and weights

Width mm	750	750	860	860	1750	1750	2640	3495
Depth mm	601	601	880	880	880	880	880	880
Net weight kg	115	160	225	240	340	360	540	700
Two Sources								

Notes:

(1) Performance refers to: R410A refrigerant; condensing temperature 45°C; incoming air 24°C-45%Rh; water 7/12°C; external static pressure 30 Pa. The declared performance does not take into account the heat generated by fans, which must be added to the system thermal load.

(2) EER (Energy Efficiency Ratio) = total cooling capacity / compressors power consumption + fans power consumption (air cooled condensers excluded).

(3) Sound levels at a 2 m distance, in a free field, as per UNI EN ISO 3744:2010.
Available accessories

Direct expansion
- Brushless DC compressors with inverter regulation and integrated oil separator
- Power supply line for remote condenser
- Power supply line with speed regulator for remote condenser
- Condensing regulation with 0-10V signal for remote condenser with EC fans
- LT Kit for operation with low temperature outside air with remote condenser
- Water-cooled condenser
- Water-cooled condenser with a condensing temperature control valve

Chilled water
- Two-way control valves
- Inlet and outlet water temperature sensors
- Energy valve kit

Heating
- Low thermal inertia electric heaters with stage control
- Low thermal inertia electric heaters with modulating control (available on request on selected models only)
- Hot water heating coils with 2- or 3-way control valve (available on request on selected models only)

Humidification
- Room humidity probe
- Supply humidity probe
- Immersed electrodes humidifier

Mechanical and structural
- Condensate drain pump
- Condensate and humidifier drain pump
- Supply overpressure relief damper
- M7 efficiency class intake air filter (EU7)
- M5 efficiency class intake air filter (EU5)
- Soundproofed duct section on the supply line
- Distribution plenum with adjustable grilles
- Free-cooling air plenum with modulating dampers (UPA series only)
- Height adjustable stand for installation with raised floor
- Grilled panels for front supply
- Closed panels for air intake from the bottom
- Panels with sandwich counter panelling (available on request on selected models only)
- Panels with reinforced acoustic lining (available on request on selected models only)

Electrical
- Alternative voltages available: 460V/3ph/60Hz - 380V/3ph/60Hz - 230V/3ph/60Hz
- Electrical supply line without neutral
- Automatic transfer switch (ATS), Basic version
- Automatic transfer switch (ATS), Advanced version

Regulation
- Constant air flow control
- Constant pressure control
- Local network set up and connection cable
- User terminal for remote installation
- Flooding detection system
G series close control air conditioners have constructional and operating characteristics suitable for meeting the design criteria of the latest generation data centers. When designing air conditioning systems for large data centers, the need for electrical cable housing and the enormous air volumes required to cool down the servers have made it essential to increase the height of raised floors up to the current 550/1,000-millimetre level. A large space below the air conditioner for the installation of an adjustable stand has thus created. It was therefore decided to use this large space to house supply fans.

Without increasing the footprint of the machine, and only exploiting space where it is provided, great advantages have been obtained:

• With the same air conditioner footprint, it has been possible to increase the front section of the coil by about 40-50% by reducing the pressure drop on the air side, and thus the fan energy consumption.
• Increasing the size of the air filters installed upstream of the cold coil allows a significant reduction in load losses and replacement frequency for maintenance.
• Increased efficiency of the fans which, installed in the stand, expel treated air horizontally and completely unobstructedly.

Technical feature

• Very high EER (Energy Efficiency Ratio)
• Limited footprint
• Dark gray RAL 7024 metal structure
• Panels with thermo-acoustic insulation
• Electrical panel complete with control and safety devices
• SySmart control microprocessor with graphic display
• G4-class efficiency air filters with dirty filter alert
• Return air temperature sensor
• Supply air temperature sensor
• Electronic EC fans
• R410A scroll compressors
• Electronic expansion valves with SysDrive system
• Two-way control valves
• Unit shutdown system for the presence of fire
• RS485 Modbus® RTU slave card
Air Conditioners with downflow air supply

ST UGA: Direct expansion air conditioners with downflow air supply and aircooled or water cooled condensers

<table>
<thead>
<tr>
<th>ST UGA</th>
<th>461</th>
<th>612</th>
<th>932</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total cooling capacity (1) kW</td>
<td>49,3</td>
<td>62,2</td>
<td>103,8</td>
</tr>
<tr>
<td>Sensible cooling capacity (1) kW</td>
<td>48,2</td>
<td>54,8</td>
<td>103,8</td>
</tr>
<tr>
<td>EER (2)</td>
<td>3,87</td>
<td>3,25</td>
<td>4,07</td>
</tr>
<tr>
<td>Air flow rate m³/h</td>
<td>9.500</td>
<td>10.000</td>
<td>19.000</td>
</tr>
<tr>
<td>Noise level (3) dB(A)</td>
<td>57</td>
<td>58</td>
<td>59</td>
</tr>
<tr>
<td>Dimensions and weights</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Width mm</td>
<td>1,490</td>
<td>1,490</td>
<td>2,390</td>
</tr>
<tr>
<td>Depth mm</td>
<td>921</td>
<td>921</td>
<td>921</td>
</tr>
<tr>
<td>Height mm</td>
<td>1,990+550</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Net weight kg</td>
<td>500</td>
<td>500</td>
<td>720</td>
</tr>
</tbody>
</table>

ST UGU: Chilled water air conditioners with downflow air supply

<table>
<thead>
<tr>
<th>ST UGU</th>
<th>70</th>
<th>150</th>
<th>230</th>
<th>300</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total cooling capacity (1) kW</td>
<td>43,3</td>
<td>85,1</td>
<td>124,4</td>
<td>170,2</td>
</tr>
<tr>
<td>Sensible cooling capacity (1) kW</td>
<td>43,3</td>
<td>85,1</td>
<td>124,4</td>
<td>170,2</td>
</tr>
<tr>
<td>EER (2)</td>
<td>31,12</td>
<td>32,48</td>
<td>34,65</td>
<td>39,13</td>
</tr>
<tr>
<td>Air flow rate m³/h</td>
<td>9.500</td>
<td>19.000</td>
<td>28.500</td>
<td>38.000</td>
</tr>
<tr>
<td>Noise level (3) dB(A)</td>
<td>57</td>
<td>59</td>
<td>61</td>
<td>60</td>
</tr>
<tr>
<td>Dimensions and weights</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Width mm</td>
<td>1,320</td>
<td>2,220</td>
<td>3,120</td>
<td>4,020</td>
</tr>
<tr>
<td>Depth mm</td>
<td>921</td>
<td>921</td>
<td>921</td>
<td>921</td>
</tr>
<tr>
<td>Height mm</td>
<td>1,990+550</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Net weight kg</td>
<td>400</td>
<td>620</td>
<td>930</td>
<td>1,250</td>
</tr>
</tbody>
</table>

Notes:
(1) Performance refers to: R410A refrigerant, condensing temperature 45°C, incoming air 32°C-30%RH, water 15/20°C, external static pressure 30 Pa, ventilated plenum, height 1000 mm. The declared performance does not take into account the heat generated by fans, which must be added to the system thermal load.
(2) EER (Energy Efficiency Ratio) = total cooling capacity / compressors power consumption + fans power consumption (air cooled condensers excluded).
(3) Sound levels at a 2 m distance, in a free field, as per UNI EN ISO 3744:2010.

Standard version for data center perimetal installation: The height of the raised floor must be at least 550 mm.

Standard version for data center perimetal installation with raised floor height less than 550 mm. In this case the stand, having a fixed height of 550 mm provided with side closing panels, must be installed above the floor. However, please make sure that the ceiling height allows good air intake.

Version for installation outside the data center, with no raised floor and rear supply line. In this case the stand, having a fixed height of 550 mm, is provided with side closing panels and rear supply grilles. The installation of a plenum with a rear air intake system is optional, in the absence of a duct system.
Available accessories

Direct expansion
- Brushless DC compressors with inverter regulation and integrated oil separator
- Power supply line for remote condenser
- Power supply line with speed regulator for remote condenser
- Condensing regulation with 0-10V signal for remote condenser with EC fans
- LT kit for operation with low temperature outside air with remote condenser
- Water-cooled condenser
- Water-cooled condenser with a condensing temperature control valve

Chilled water
- Three-way control valves
- Inlet and outlet water temperature sensors
- Energy valve kit

Heating
- Low thermal inertia electric heaters with stage control
- Low thermal inertia electric heaters with modulating control (available on request on selected models only)
- Hot water heating coils with 2- or 3-way control valve (available on request on selected models only)

Humidification
- Room humidity probe
- Supply humidity probe
- Immersed electrodes humidifier

Mechanical and structural
- Condensate drain pump
- Condensate and humidifier drain pump
- Supply overpressure relief damper
- M5 efficiency class intake air filter (EUS)
- Front or rear intake plenum
- Free-cooling air plenum with modulating dampers (UGA series only)
- Ventilated stand with panelling for front or rear supply
- Ventilated stand with panelling for bottom supply (installation on the raised floor)
- Panels with sandwich counter-panelling
- Panels with reinforced acoustic lining

Electrical
- Alternative voltages available: 460V/3ph/60Hz - 380V/3ph/60Hz - 230V/3ph/60Hz
- Electrical supply line without neutral
- Automatic transfer switch (ATS), Basic version
- Automatic transfer switch (ATS), Advanced version

Regulation
- Constant air flow control
- Constant pressure control
- Local network set up and connection cable
- User terminal for remote installation
- Flooding detection system
R series close control air conditioners are built and sized in such a way that they can be installed alongside data center racks in air conditioning systems for large data centers, the adoption of the following design concepts has in fact become an established custom:

- The racks containing servers are increasingly positioned according to the Hot Aisle and Cold Aisle layout.
- Air temperatures are allowed to rise up to 30-35°C in the hot aisle and 20-25°C in the cold one, with very low humidity (never above 30%).
- Server performance is increasingly on the rise, while server sizes are increasingly reduced. As a result, many more servers can be installed in a rack, so some of these racks can be eliminated as they are empty. At the same time, heat dissipation increases, thereby requiring more power from air conditioners. R series air conditioners are designed and built so as to fit into this plant layout perfectly. As a matter of fact:

- They exploit the space left free from racks and allow cold air to be distributed as close as possible to servers, that is, where heat is generated.
- They feature rear intake from the hot aisle and front supply to the cold aisle with a horizontal flow. The horizontal flow reduces internal pressure drop, with a consequent reduction in the power draw of the fan.

Technical feature

- Very high EER (Energy Efficiency Ratio)
- Limited footprint
- Dark gray RAL 7024 metal structure
- Panels with thermo-acoustic insulation
- Front and rear accessibility for easy maintenance
- Cooling, electric and water top/bottom connections
- Electrical panel complete with control and safety devices
- SySmart control microprocessor with graphic display
- G4-class efficiency air filters with dirty filter alert
- Return air temperature sensor
- Supply air temperature sensor
- Electronic EC fans
- Brushless DC compressors with R410A inverter regulation
- Electronic expansion valves with SysDrive system
- Three-way control valves
- Unit shutdown system for the presence of fire
- RS485 Modbus® RTU slave car
Air Conditioners with horizontal air supply

Version for "in row" installation with front and side air supply

ST HRA: Direct expansion air conditioners with horizontal

<table>
<thead>
<tr>
<th>ST HRA</th>
<th>121</th>
<th>231</th>
<th>361</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total cooling capacity (1) kW</td>
<td>8,6</td>
<td>19,6</td>
<td>31,4</td>
</tr>
<tr>
<td>Sensible cooling capacity kW</td>
<td>8,5</td>
<td>16,4</td>
<td>25,7</td>
</tr>
<tr>
<td>EER(2)</td>
<td>2,92</td>
<td>3,19</td>
<td>3,32</td>
</tr>
<tr>
<td>Air flow rate m³/h</td>
<td>3.000</td>
<td>6.000</td>
<td>6.800</td>
</tr>
<tr>
<td>Noise level (3) dB(A)</td>
<td>50</td>
<td>52</td>
<td>54</td>
</tr>
<tr>
<td>Dimensions and weights</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Width mm</td>
<td>300</td>
<td>600</td>
<td>600</td>
</tr>
<tr>
<td>Depth mm</td>
<td>1.200</td>
<td>1.222</td>
<td>1.222</td>
</tr>
<tr>
<td>Height mm</td>
<td>1.970</td>
<td>1.985</td>
<td>1.985</td>
</tr>
<tr>
<td>Net weight kg</td>
<td>190</td>
<td>215</td>
<td>215</td>
</tr>
<tr>
<td>Free Cooling</td>
<td>o</td>
<td>o</td>
<td>o</td>
</tr>
</tbody>
</table>

ST HRU: Chilled water air conditioners with horizontal supply

<table>
<thead>
<tr>
<th>ST HRU</th>
<th>20</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total cooling capacity (1) kW</td>
<td>21,2</td>
<td>31,6</td>
</tr>
<tr>
<td>Sensible cooling capacity kW</td>
<td>21,2</td>
<td>31,6</td>
</tr>
<tr>
<td>EER(2)</td>
<td>16,0</td>
<td>25,7</td>
</tr>
<tr>
<td>Air flow rate m³/h</td>
<td>6.000</td>
<td>9.000</td>
</tr>
<tr>
<td>Noise level (3) dB(A)</td>
<td>56</td>
<td>61</td>
</tr>
<tr>
<td>Dimensions and weights</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Width mm</td>
<td>300</td>
<td>600</td>
</tr>
<tr>
<td>Depth mm</td>
<td>1.200</td>
<td>1.222</td>
</tr>
<tr>
<td>Height mm</td>
<td>1.970</td>
<td>1.985</td>
</tr>
<tr>
<td>Net weight kg</td>
<td>120</td>
<td>190</td>
</tr>
<tr>
<td>Free Cooling</td>
<td>o</td>
<td>o</td>
</tr>
</tbody>
</table>

Notes:

1. Performance refers to: R410a refrigerant; condensing temperature 45°C, incoming air 30°C-30%RH; water 14/20°C; external static pressure 30 Pa. The declared performance does not take into account the heat generated by fans, which must be added to the system thermal load.
2. EER (Energy Efficiency Ratio) = total cooling capacity / compressors power consumption + fans power consumption (air cooled condensers excluded).
3. Sound levels at a 2 m distance, in a free field, as per UNI EN ISO 3744:2010.
Available accessories

Direct expansion
- Power supply line for remote condenser
- Power supply line with speed regulator for remote condenser
- Condensing regulation with 0-10V signal for remote condenser with EC fans
- LT Kit for operation with low temperature outside air with remote condenser
- Water-cooled condenser
- Water-cooled condenser with a condensing temperature control valve

Chilled water
- Two-way control valves
- Inlet and outlet water temperature sensors

Heating
- Low thermal inertia electric heaters with stage control

Humidification
- Room humidity probe
- Supply humidity probe
- Immersed electrodes humidifier

Mechanical and structural
- Condensate drain pump
- M5 efficiency class intake air filter (EU5)
- Closed front panel for side supply
- Closed side panels for front supply
- Wheels for handling

Electrical
- Alternative voltages available 460V/3ph/60Hz - 380V/3ph/60Hz - 230V/3ph/60Hz
- Electrical supply line without neutral
- Automatic transfer switch (ATS), Basic version
- Automatic transfer switch (ATS), Advanced version

Regulation
- Constant air flow control
- Constant pressure control
- Local network set up and connection cable
- User terminal for remote installation
- Flooding detection system
Selection Software is an innovative selection software for Systemair products operating on Windows™.

Selection Software is the ideal tool to select and calculate SysTemp range. Through a simple, intuitive interface, it allows the user to:

- Select and customise units through a configuration wizard
- Calculate the unit performance depending on the project requirements
- Access the DWG Autocad® drawings of the selected units
- Manage your customer portfolio through a special integrated function
- Manage the issuance and filing of bids
- Manage document storage within individual offers

The minimum requirements to install the Selection Software selection software are:

- Windows™ XP, Windows™ Vista, Windows™ 7, Windows™ 8 or 8.1 (not RT)
- 300 MHz or higher
- At least 2 GB of RAM memory
- At least 2 GB of free space on the hard drive
- Keyboard and mouse, or compatible pointing device
- Video card and monitor with Super VGA (1024x768) resolution or higher
- Adobe® Flash® Player
The wide range of Systemair close control air conditioners allows most design and installation requirements to be met. When this is not the case, however, Systemair is able to put forward alternative solutions to satisfy the most specific needs with in-house know-how.

Close control air conditioners for ceiling installation

This type of unit is designed to be installed on the ceiling in the premises to be conditioned. These units are particularly suitable for small rooms, where the available space is not enough to install perimeter units.

Available with direct expansion circuit for remote condensing unit and with chilled water circuit, for cooling capabilities from 5 to 20 kW.

Console close control air conditioners

Designed to have a height of 1250 mm, this type of unit has been designed for environments where the operating spaces are not suitable for the installation of normal perimeter units.

Available with direct expansion circuit for remote air or in-built water condensers and with chilled water circuit, for cooling capabilities up to 15 kW.
Air cooled condensers and dry coolers

General features
• Range of air cooled condensers with capabilities from 4.6 kW to 116.6 kW
• Range of dry coolers with capabilities from 11 kW to 120 kW
• Versions for horizontal and vertical installation and with V-shaped structure
• TURBOCOIL® heat exchangers with SAFETUBES SYSTEM® coil suspension
• Casing made of galvanised steel, powder coated Epoxy-Polyester RAL 9003 resistant to corrosion
• New high-efficiency, low-consumption motors, statically and dynamically balanced, with permanently greased bearings, in-built overheat protection and integrated protection grilles

Available accessories
• Latest generation EC fans for high energy savings, reduced noise levels and better regulation of the number of revolutions
• Fins coated with ALUPAIN® for better aluminium corrosion protection
• Configuration with multiple circuits or subcooling circuits
• If more powerful remote condensers and dry coolers are needed, please use selection software.

Systemair is able to offer a range of air cooled condensers and dry coolers which can be matched to close control air conditioners, or meet any system requirement.
Systemair solutions

The units of the Systemair close control air conditioning range have been optimised for use in new generation data centers, offering the highest guarantee of flexibility, efficiency and reliability.

Technological progress has created the need for ever greater exchange of data, thereby exponentially increasing the concentration of electronic equipment in data centers. Infrastructure limits and constantly growing energy costs have thus redefined the design and development standards of data centers, making efficiency and energy saving key concepts underlying the choice of close control air conditioners.

Low-density data centers are normally configured according to the hot/cold aisle design.

This type of system involves the use of perimetral units which, through a raised floor, convey air into the “cold aisle”. The air heated by servers is then collected by “hot aisles”.

This solution offers high flexibility, making it easy to enlarge a data center over time, as well as changing the rack arrangement.
Medium-density data centers are normally configured according to the hot/cold aisle design and adding localised “in-row” air conditioning units.

This type of system involves the use of perimeter units which, through a raised floor, convey air into the “cold aisle”. The air heated by racks will then be collected by hot aisles.

“In-row” units allow you to add a localised temperature control, which eliminates “hot-spot” problems.

This solution is optimal both if an existing data center is expanded, and for the optimisation of loads in newly implemented data centers.

High-density data centers are normally configured according to the hot/cold aisle partitioning design, with any localised, “in-row” air conditioning units.

This type of system involves the use of high-efficiency perimeter units, with ventilation being installed in the raised floor. The rack aisles (hot or cold) are partitioned to prevent hot and cold water from being mixed and obtain homogeneous distribution on the servers. “In-row” units allow you to add a localised temperature control, which eliminates “hot-spot” problems.

This solution allows you to optimise air distribution and maximize the system energy efficiency, avoiding energy waste due to mixing hot and cold air in the upper part of the racks.